Half life dating equation

If two reactions have the same order, the faster reaction will have a shorter half-life, and the slower reaction will have a longer half-life.The half-life of a first-order reaction under a given set of reaction conditions is a constant.

half life dating equation-71half life dating equation-80half life dating equation-84

I mean, maybe if we really got in detail on the configurations of the nucleus, maybe we could get a little bit better in terms of our probabilities, but we don't know what's going on inside of the nucleus, so all we can do is ascribe some probabilities to something reacting. And it does that by releasing an electron, which is also call a beta particle. And I've actually seen this drawn this way in some chemistry classes or physics classes, and my immediate question is how does this half know that it must turn into nitrogen? So that after 5,740 years, the half-life of carbon, a 50% chance that any of the guys that are carbon will turn to nitrogen. But we'll always have an infinitesimal amount of carbon. Let's say I'm just staring at one carbon atom. You know, I've got its nucleus, with its c-14. I mean, if you start approaching, you know, Avogadro's number or anything larger-- I erased that. After two years, how much are we going to have left? And then after two more years, I'll only have half of that left again.

And so, like everything in chemistry, and a lot of what we're starting to deal with in physics and quantum mechanics, everything is probabilistic. So one of the neutrons must have turned into a proton and that is what happened. And you might say, oh OK, so maybe-- let's see, let me make nitrogen magenta, right there-- so you might say, OK, maybe that half turns into nitrogen. And over 5,740 years, you determine that there's a 50% chance that any one of these carbon atoms will turn into a nitrogen atom. And we could keep going further into the future, and after every half-life, 5,740 years, we will have half of the carbon that we started. Now, if you look at it over a huge number of atoms. But after two more years, how many are we going to have? So this is t equals 3 I'm sorry, this is t equals 4 years.

So what we do is we come up with terms that help us get our head around this. So I wrote a decay reaction right here, where you have carbon-14. So now you have, after one half-life-- So let's ignore this. I don't know which half, but half of them will turn into it. And then let's say we go into a time machine and we look back at our sample, and let's say we only have 10 grams of our sample left.

Now you could say, OK, what's the probability of any given molecule reacting in one second? But we're used to dealing with things on the macro level, on dealing with, you know, huge amounts of atoms. So I have a description, and we're going to hopefully get an intuition of what half-life means. And how does this half know that it must stay as carbon? So if you go back after a half-life, half of the atoms will now be nitrogen. Then all of a sudden you can use the law of large numbers and say, OK, on average, if each of those atoms must have had a 50% chance, and if I have gazillions of them, half of them will have turned into nitrogen. How much time, you know, x is decaying the whole time, how much time has passed?

What's going to happen after one billion years? And then you didn't build your time machine well.

Last modified 28-Oct-2019 08:17